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Abstract: The cloud logging service is a core component for the operation and management
of the production system. The service is usually a central server deployment whereby the
dedicated central servers accept all log messages from leaf computing nodes. As the number of
applications and solutions on the cloud changes dynamically, the amount of log messages that
are forwarded to the logging service is also changed. The paper proposes a distributed logging
service (DLS) that distributes log messages to multiple leaf computing nodes. No central server
is required to manage the logging service. DLS also provides alert notifications, authentication,
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and solutions which are used for production usages.
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1 Introduction

Cloud computing has been widely adopted in the IT
industry since its ability to imporve IT automations in
operation and management of production systems has been
recognised. Among the advantages of cloud computing is its
ability to make the computing resources required by user’s
on demand (Mell and Grance, 2009; Liu et al., 2011).

As the demand for cloud computing has changed,
so too has the consumption of computing resources
are dynamically increased and decreased. In addition,
the serverless computing, which can dynamically assign
computing resources to application software, is emerging
in some cloud-native environments (Jonas et al., 2019).
Enterprise applications have also migrated to cloud-native
environments with microservices architecture (Balalaie

et al., 2016). Therefore, systems management software
for cloud computing should be improved to ensure better
operation and management for cloud instances.

Logging services are among the core services for
systems management. It is usually based on the central
server model (CSM) (Sohlich et al., 2014), which consists
of several central servers, as illustrated by Figure 1.
Logging services of this nature are called central logging
service (CLS). All log messages from leaf computing
nodes are forwarded to the central servers, which process
and store them immediately. Several challenges and issues
affect CLS in cloud computing, and it is necessary to
address these challenges as CLS is deployed as part
of cloud-based production systems. These challenges and
issues inculde the following:
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1 Continuous backend services: The logging service is
one of core systems management services since the
production system in enterprises is required to support
the continuous operation without any service
disruption. Thus, logging services serve applications,
solutions and administrators without any downtime so
that the application’s software status can be viewed at
any time using the logging service (Gormley and
Tong, 2015). As CLS prevents single point of failure,
it usually has high availability (HA) and disaster
recovery (DR) for processing both incoming log
messages and requests from the administrator.

2 Dynamically changing environments: In legacy
systems, the resource requirements for the logging
service were static since the configurations were fixed
and log messages to the central servers could be
easily estimated. As cloud computing has been
introduced and is a dynamically changing environment
in response to users’ demands, the allocation of
computing resources for the logging service is one of
the major challenges faced by the resource planning
in systems management. As the large amount of log
messages for the logging service changes dynamically,
it is often hard to estimate the computing resources
that will be required during the planning phase.

3 Dedicated CPU resources: The dedicated CPU
resources on central servers are required to process all
incoming log messages though the logging service is
the backend management component (Lin et al.,
2013). The servers for the logging service must
categorise and index incoming log messages, which
are stored in the storage space. Therefore, sufficient
CPU power to process incoming log messages on
time is assigned to the central servers.

4 Large amount of dedicated storage space: Dedicated
storage space are required to store large amount of
log messages (Yue et al., 2010), for example, if the
amount of log messages is approximately 100 GB per
day and they are forwarded to CLS from all leaf
computing nodes. The logging service has at least the
100GB storage space for log messages, and they are
kept for one day only. If the retention period for log
messages is one week, at least approximately 700 GB
of storage space is required.

To address these issues and challenges are solved, this
paper proposes a distributed logging service (DLS). The
proposed architecture adopts the distributed server model
(DSM) to process log messages from leaf computing nodes
although the legacy CLS adopted the CSM. Figure 2
shows a DSM that has multiple servers at distributed
locations. DLS includes distributed hash table (DHT) from
which log messages are distributed to multiple nodes in
key/value pairs. Those log messages can be retrieved with
the key. DLS also has several functions, such as alert,
authentication, lifetime management and resilience, which
are required for the production system. The remainder of

this paper is structured as follows. The section entitled
‘related studies’ describes the related fields of central log
systems management for logging services and DHT studies.
The section entitled ‘requirements and use case scenarios’
describes a set of requirements for the logging service and
use case scenarios for typical usages of log messages. The
section entitled ‘architecture’ describes CSM/DSM, DHT,
the process of log messages and DLS architecture. The
section entitled ‘design for production systems’ describes
the required functions and the DLS design for the
production system. The ‘evaluation’ section describes the
evaluation of the emulated environment and its results.
The ‘discussions’ section describes the challenges faced in
completing this study. Finally, the ‘conclusion’ presents a
summary of the study and concluding remarks.

Figure 1 Central server model

2 Related studies

This section describes related studies for central log
management systems and DHT.

2.1 Central log management systems

The central log management system is used to deploy
the log management system on the central location in
Figure 1. Leaf computing nodes send log messages to the
central log management system. Apache Hadoop and Spark
can process large amounts of data on the central servers
(Shvachko et al., 2010; Zaharia et al., 2010).

The best known software product for log management
is elastic search which is based on the central key/value
database (Gormley and Tong, 2015). The architecture
design for elastic search is a central server that has a
central database to search for log messages. This CSM
can usually be applied to production systems of both
cloud and on-premise data centres. Elastic search, Logstash
and Kibana (ELK) are a typical log management software
suite for central log management systems (Bagnasco et al.,
2015a, 2015b). The ELK suite collects all log messages
from leaf computing nodes since log agents on leaf
computing nodes forward to elastic search. All search and
analysis processes for the logging service are performed
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on the central servers. Therefore, they need numerous
dedicated CPUs and storage space on the central servers.

LogDNA is a cloud service provider for logging
services. After the LogDNA agents have been installed
on leaf computing nodes, those log messages on leaf
computing nodes are forwarded to the LogDNA service
which has the central servers with storage. Users can
subscribe to LogDNA’s logging services and install the
agent to forward them. The operational dashboard from
LogDNA is provided to search, analyse and report those
log messages (LogDNA, 2019). The service is also suitable
for Kubernetes containers to collect log messages for the
operation and management of cloud-native environments.
LogDNA is a central architecture model for logging
services. Therefore, it also needs numerous CPUs and
storage space for service on the central servers.

Figure 2 Distributed server model

The design of the monitoring system called private cloud
monitoring system (PCMONS) was proposed for private
cloud monitoring with its implementation. The study
describes a use case scenario using the architecture and
the application (Chaves et al., 2011). CSM receives all
monitoring data on the central server.

An integrated management system for log messages
from distributed sensors was proposed as well as servers
and network devices (Ikebe and Yoshida, 2013). They
also proposes a cross-processing system for several kinds
of log messages. The system aims to provide a flexible
method to provide access to distributed log messages
using log attributes and values. Although it proposes
distributed management for log messages, the prototype
of the distributed processing system is implemented using
the local and the central fluent server, which manages the
log messages. Therefore, its architecture is still the central
management model.

Log messages are managed in Kubernetes containers
and are forwarded through stdout/stderr to outside
the container environment. The installed logging-agent
PoD in Kubernetes can forward log messages to the
logging services (Xu et al., 2017). Therefore, all log

messages can be processed on CLS. Containers on
Kubernetes environments are considerably smaller than
typical VMs. Once many containers have been created in
the environments, they generate numerous log messages
which will generate a large amount of data.

Astrolabe was proposed as a robust and scalable
technology for distributed monitoring, management and
data mining (Van Renesse et al., 2003). It collects a
large-scale system state, permitting rapid updates and
providing on-the-fly attribute aggregation. A distributed
management architecture and its system performance was
evaluated in this study (Jiang et al., 2016). The basic idea is
to introduce multiple cell heads in front of the management
server. The management workload can be managed on
those cell heads. Although distributed management was
proposed, it is a limited distributed management since it has
a three-level zone tree and monitoring data is aggregated to
top-level root zone.

Since those related studies are a related to CLSs, their
findings and implementations for logging services can be
referred to for the proposed architecture and design. One
drawback to the centralised deployment model for those
logging services is its requirement of resource assignments.
CSM for the logging service requires sufficient computing
resources such as CPU, memory and disks since the central
server processes many log messages, which are forwarded
by leaf computing nodes. Thus, elastic search can have
scalability with multiple servers as a server cluster.

If copious amounts of log messages is flowing into
the central servers, the central servers will overflow with
the incoming log messages. In addition, the central servers
should be robust with HA and DR without any service
disruption or data loss. Since the log management system is
a critical backend service for IT operation and management,
those central servers must maintain consistent functionality
to provide the logging service.

Although cloud logging services are critical for the
operation and management, the service is merely a backend
operation function. After the logging service is deployed in
the cloud environments, service owners are required to set
up the log agent, which collects and forwards log messages
for their applications to the central log server.

Figure 3 DHT – Chord
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2.2 Distributed hash table

Chord is a service used to implement DHT (Stoica et al.,
2003). It is used to support distributed contents management
(Rhea et al., 2004). Chord supports just one operation:
given a key, it maps the key onto a node. Data location can
be easily implemented using Chord by associating the key
with each data item, and storing the key/value pair at the
node to which the key maps (Stoica et al., 2003). It provides
load balance, decentralisation, scalability and availability.
In addition, Chord has several characteristics that support
distributed operation:

1 joins and stabilisations for nodes

2 impact of node joins on lookups

3 failure and replication

4 voluntary node departures.

It has consistency caching, which maps index to data
contents for fault tolerance (Karger et al., 1997). As Chord
offers several advantages, DLS could adopt Chord DHT
to manage log messages on distributed servers. Each DLS
node has the DHT function that generates log messages.

Cassandra is another database that facilitates DHS
implementation (Lakshman and Malik, 2010). It is a
one-hop DHT that maintains consistent tunable trade-offs
between consistency and latency. In addition, it is more than
a simple DHT because the values are not opaque, but they
are structured into columns and column families, which are
indexed in Cassandra.

Dabek et al. (2004) evaluated the performance of
DHash++ implementation. In this study, measurements of
425 server instances running hosts show that the latency
optimisations for DHT++ can reduce the processing time by
a factor of two. The processing time is required to locate
and fetch data. In addition, the throughput optimisations
result in a sustainable bulk read throughput, which is
related to the number of DHT hosts times the capacity of
the slowest access link. Since the results of performance
evaluation can be referred for DHT++ implementation to
the performance aspect of DHT, our study focuses on data
center servers, which are connected via high-speed network
links. Therefore, no slower access link is present among
DHT nodes.

UsenetDHT is a service that aims to reduce the total
storage space dedicated to Usenet by storing all articles
in a shared DHT (Sit et al., 2008). This study describes
the design and implementation of UsenetDHT. It allows a
set of cooperating sites to maintain shared, distributed and
copied articles. It uses DHT, which provides shared storage
for those Usenet articles across the sites. The present study
utilises shared storages for those articles with DHT.

The public DHT service that runs on PlanetLab was
proposed to support application based on DHT (Rhea
et al., 2005). The management of storage allocation for
untrusted clients and an interface allowing access to
DHT were provided. The paper describes two additional
interfaces: lookup in DHT and join outside of DHT,

to support OpenDHT. OpenDHT can support multiple
separate applications with identifiers for each application.
In addition, it supports fair storage allocation among DHT
nodes. Although OpenDHT support multiple applications, it
is unclear whether it can support log messages and co-exist
with applications on the same computing node.

Amazon Dynamo is a highly available key-store
database (DeCandia et al., 2007). It is provided as platform
as a service (PaaS) from Amazon Web Service. As it is
characterised as a zero-hop DHT, each node maintains
enough routing information locally to route a request
directly to the appropriate node. Bigtable is a distributed
storage system for managing structured data that is designed
to scale to a very large size (Chang et al., 2008). It is a
central service for end users and good evidence for scalable
DHT implementation on the local server.

Although several studies have examined DHT, no study
has directly investigated logging services in relation to
DHT. The present study proposes the logging service with
DHT and aims to develop a production system so several
management functions are added to DLS.

3 Requirements and use case scenarios

This section describes the requirements for the logging
service and use case scenarios to which the logging service
can be applied.

3.1 Requirements

Two major functions are required for the logging service
in general. They are the ‘store’ and ‘retrieve’ functions for
those log messages. The ‘store’ function simply stores them
into the storage without any significant delay. The ‘retrieve’
function is to get them with the specified condition of the
search. In addition, the logging service meets the following
requirements.

1 The cloud’s dynamically changing environment: The
applications and solutions must follow the
dynamically changing computing environment on
cloud. It means that the sum of incoming log
messages from leaf computing nodes often has a large
amount of data for the logging service. It must be
accepted and processed without any delay.

2 Minimised dedicated CPU and storage resources: The
consumption of dedicated CPU and storage resources
is generally minimised. The logging service requires
many dedicated CPU resources to create the index
and search for the specific log message in the
repository. In addition, the same amount of dedicated
storage required to keep those log messages is also
required for future search and retrieval. Efficient
resource management for both CPU and storage
resources should be considered as their minimisation
assists with cost reduction.
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3 Critical management service: Although the logging
service is only one systems management functions, it
is a critical backend service for the production system
because the logging service can recall any past event
with the set of log messages. The systems
management function can identify the failure event
and the unusual message in log messages and
understand what occurred in the past.

3.2 Use case scenarios

The logging service has the following use case scenarios.

3.2.1 Check of log messages

Figure 6 shows an example of log messages generated
by the web server during the operation phases. These log
messages include forbidden and error messages with date,
time and IP address. Other log messages are similar in
format and are stored by the logging service.

As those log messages are stored in the repository,
the search and retrieval process retrieve the specific log
message from the repository. The administrator can search
and retrieve it for further analysis of the infrastructure
issues using the operation dashboard. In addition, those log
messages can be used for different kinds of activities in the
development, test and operation phases.

When the specified server on the production system
generates an error like the log message in Figure 6,
the administrator launches an investigation to quickly
understand two aspects:

1 Whether the current status of the specified server
down, up or unknown. The current status can be
investigated with the monitoring and logging service.

2 When the specified server encountered an error or
was down. The log message is useful for investigating
such past events

3.2.2 Alert notification

When a failure has occurred in the operation, log messages
include the failure event. Those events are linked to
generate the alert notification with the log message. Alert
notifications are usually linked to system/service failure, an
unusual system status or security incidents. When the alert
notification is generated with log messages, operators and
administrators will review the specific log message for the
alert notification and begin to execute the recovery process
for the alert to resolve the incident.

3.2.3 Root cause analysis

As the alert notification is received, the administrator begins
to address the issue and recovers the system immediately.
In addition, the administrator checks the log messages to
determine the root cause for the issue. It is a root cause
analysis based on log messages.

For example, an error event indicating the disk is full
will occur due to the large amount of log messages stored
locally. If it occurred at 11 PM yesterday, the event may
have been detected and notified to administrator for the
further attention. The notification is issued swiftly after
the even has been detected. The administrator looks at the
log message on the operation dashboard and checks the
failure log message to ascertain whether the disk is full.
Based on an analysis of the log messages, the administrator
understands that the full disk is the root cause.

3.2.4 Development and test phases

The logging service is used for multiple purposes. In
the development phase, the logging service provides
log messages for debugging the software components.
Development engineers check those log messages to test
and debug to the purpose of updating their developed
program codes for their software components.

The logging service can also be used for program testing
during the system test phase. Test engineers usually check
those log messages to verify that the functions have worked
correctly. The activities for the test phase differ from those
for the development phase since test scenarios and cases are
executed to check those functions. Therefore, the logging
service is suitable for both the development and test phases.

3.2.5 Security incident and event management

Log messages are also used for security incident and event
management (SIEM) (Yen et al., 2013). If unusual access
to the computer is detected, the specific log message shows
the access. It can be detected in SIEM with log messages.
A compliance audit is also required to store the past audit
activity events (Murugesan and Ray, 2014). For example,
log messages for user access are stored when the audit
record is required as a past event.

Figure 4 DLS architecture

4 Architecture

This section describes CSM/DSM, DHT and the
architecture for the logging service illustrated in Figure 4.
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4.1 Central and distributed server model

Two models exist for logging services: the CSM and the
DSM.

4.1.1 Central server model

Figure 1 shows the CSM, which accepts and processes
all log messages on the central servers. ‘Leaf nodes’ in
Figure 1 send log messages to ‘central nodes’, which
are used for the logging service. Once log messages are
received by the logging service on the addspan central
nodes in Figure 1, they are processed and indexed. The user
can search for and retrieve the log messages through the
dashboard on the logging service in Figure 1.

The operation and management components, including
the logging service, are usually CSM, which receives
log messages from leaf computing nodes. When a large
number of logging messages is forwarded to the central
servers, numerous CPU and storage resources are required
to process and store them without any delay or bottleneck.
In addition, as a peak log message transactions is supported,
the unused CPU and storage resources is always reserved
for the logging service on cloud. The systems management
function is generally a kind of overhead function for the
core services, even when it is a mandatory requirement for
the development, test and operation phases. Therefore, the
dedicated resources for the log service are minimised and
the utilisation of the servers is increased.

Figure 5 DHT operations

4.1.2 Distributed server model

Figure 2 shows a DSM for the logging services�and all
servers for the logging service are distributed. The DSM
can process log messages on the distributed nodes in
Figure 2. Therefore, the workload for processing can be
assigned to distributed nodes instead of the large central
servers. If there are overheads for DSM, the feasibility of
the logging service is investigated with DSM. The present
study investigates it for the production systems.

DSM can be adopted for logging services as it remedies
several drawbacks of the CSM (Tanenbaum and Van Steen,
2007). The log messages are forwarded and stored on
distributed nodes, which are based on the DSM. The DSM
provides the processing power for log messages on the
distributed nodes, and it has no central server to store log

messages or search for specific log messages. It provides
them with the distributed servers.

The management server for the logging service and the
access point that supports application program interface
(API) runs on distributed servers. They can act as a
part of the logging service rather than being assigned to
the dedicated central server that processes the incoming
requests for the logging service.

4.2 DLS architecture

The architecture decision for the DSM has been done
with the investigations. Figure 4 shows the architecture
of DLS. Each server has the processes for ‘application
software’ and ‘logging component’. ‘Application software’
provides the solution service to end users. It generates
numerous log messages, which are usually stored in local
files. The logging component for DLS is deployed on the
same server on which the application software is running. It
retrieves local log messages and forwards them to ‘logging
component’ on the local server. It is interconnected with
the other ‘logging component’ on the different servers in
Figure 4, and they are a part of the DLS.

4.3 Distributed hash table

DHT is a solid technology that can share large amounts
of data with robustness and availability among distributed
nodes, illustrated by Figure 5. DHT operations in Figure 5
are the put (k, v) operation to store data (v) with key (k)
and the get (k) operation to retrieve data with key (k). The
operation get (k) returns data (v) when they are found on
DHT. DHT manages the hash table on the distributed nodes.
Data entries are stored in the distributed nodes with the hash
table. Figure 5 shows an example of DHT that consists of
four nodes that have (k1, v1), (k2, v2), (k3, v3) in the first
node, (k4, v4) in the second node and (k5, v5), (k6, v6) in
the third node.

There are two major advantages in DHT:

1 Join/leave: Resilience is required to join and leave
networks. DHT can support the network link changes
for the nodes.

2 Data loss: Hashed data can be automatically
distributed to DHT nodes. Since stored data are
replicated across nodes, data loss as a result of lost
nodes can be avoided. The removal of any single
node has no impact at all.

On the other hand, DHT has the following limitations:

1 Triggers and events: The function for events and
triggers is not supported.

2 Data consistency and integrity: DHT does not provide
absolute guarantees on the consistency and integrity
of data.
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3 Group queries: DHT does not have efficient group
queries, range queries or other data lookups.

4 No central authority: No central authority is present in
the configuration setup. The multiple nodes must
cooperate when decisions need to be made.

5 Longer retrieval time: The retrieval time for looking
up log messages is O(logN). It takes a few seconds
depending on the specified location, the number of
nodes and the latencies among those nodes.

If these limitations can be managed, DHT technology can
be applied to the logging service to realise DLS.

4.4 Log messages with DHT

As DHT can process log messages on distributed nodes,
each node can store and retrieve them without the central
server. Every node generates log messages, which are stored
into local log files at first, and the format of those log
messages is shown in Figure 6. The local agent forwards
those log messages to DHT in the distributed logging
service. Consequently, those log messages are stored into
the table in DHT.

Figure 6 Example of log messages

Figure 7 DLS local process

When the log message is stored in the DHT, key/value
pairs are configured for the log messages. The key is the
timestamp at which the log message is generated, and the
value can be the log message itself.

The hash table is provided to generate keys and values.
Both keys and values are defined for DHT. Figure 8
shows the process by which the log message timestamp
and contents are stored as the key and value for DLS. In
Figure 8, log messages are divided into timestamps and

contents. Keys are timestamps, and values are log message
contents. This distinction can reduce the size of the DHT.
It separates between the index for the search and the actual
message contents for the retrieval.

Figure 3 shows that DHT manages logging messages for
DLS. Once the query for DHT has been sent to find log
messages in DHT (Komarek et al., 2018), it can be retrieved
for the search results in DHT since DHT stores those log
messages.

5 Design for production systems

This section describes the DLS design for production
systems.

Figure 7 shows the process by which the local host
becomes one of DHT nodes. ‘Application software’ in
Figure 7 stores their log messages in the local file. ‘Log
retrieval’ in Figure 7 retrieves log messages from the log
file and selects the key/value pairs for log messages. It
forwards them to ‘authentication’ and ‘alert’ as shown in
Figure 7. The local DLS has a DHT node, which can accept
log messages that are locally generated. The ‘DHT node’
interacts with ‘other DLS nodes’, which includes the DHT
Node as shown in Figure 7 so DHT can share those log
messages among the DHT nodes.

Figure 8 Key and value for DLS

5.1 Alert with log messages

Figure 9 shows the alert component for log messages. Log
messages (#1, #2, ..., #n) in Figure 9 are forwarded to
‘alert process’. It checks log messages with ‘common rules’
and ‘local rules’ to determine whether the alert notification
has been generated, as shown in Figure 9. If the specific
log message is matched with one of those alert rules,
the alert notification is forwarded to another process, such
as e-mail, SMS or Web notification on the dashboard.
The administrator can detect the alert notification and will
fix the issue for the specific component that the alert
notification has highlighted. As illustrated by Figure 9,
‘common rules’ are common rules for log messages among
DLS nodes, and ‘local rules’ are only applied to the local
software component to check its issues.
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5.2 Authentication for access

Figure 10 shows the local authentication processes. Log
messages are checked by the authentication process whether
they can be stored. Since DHT contains the hash table to
store and retrieve the value with the key, the key/value
pair is deployed to multiple DHT nodes. Since different
administrators and processes have access to DLS, the local
authentication for the process is required to have a valid
access to DLS.

Authentication is required to store the log messages that
come from ‘log retrieval’ as shown in Figure 7. When log
messages are submitted to DLS, like log message (#2) in
Figure 10, ‘authentication process’ checks the valid access
to DLS with the ‘ID/password’ database in Figure 10. Once
it has been authenticated, the log message is forwarded to
the ‘DHT node’ as the log message (#1) in Figure 10.

Another mode of authentication is to search and retrieve
the log message from other local software. They are ‘search
and retrieve’ requests as shown in Figure 10. Therefore, the
API access to retrieve the log message from local DHT is
granted with the authentication. After the request has been
validated, the log message can be retrieved with the key as
the log message (#3) as shown in Figure 10.

Another authentication method is hash-based distributed
authentication method (HDAM). It realises a decentralised
efficient mutual authentication mechanism for each pair of
nodes (Takeda et al., 2008). As the cloud authentication
service can be relied on, the usual API authentication is
adopted in this paper.

5.3 Lifetime for log messages

Log messages from leaf computing nodes are locally stored
in the local DLS. Since the log messages are created with
various kinds of activities in those leaf computing nodes
and forwarded to the local DLS, the required storage size
on the local DLS increases rapidly. Therefore, lifetime
management is required to manage the stored log messages.
The expiration time is added to each log message. In
addition, the expiration time is often updated since the
cloud is a dynamically changing environment and the
amount of log messages increases and decreases.

When the log message has reached its expiration, it is
simply moved from DHT to the inexpensive storage. Later,
they are permanently removed. Consequently, the required
size in the local storage can be controlled with the lifetime
management.

Figure 9 Local alert process

5.4 Resilience

The availability of DLS is also required by the production
service since a continuous service is required to provide
for applications and solutions. The staging and production
environments usually have HA and DR. They can
support continuous services for applications, solutions and
administrators. Duplicated computing resources are usually
required at different locations.

5.4.1 HA

In the legacy production system, the logging service usually
requires HA as a non-function on the different physical
hardware in the same data centre. Twin servers must adopt
the same setup but one hardware with an independent
network connection and a power source from another
hardware.

When the distributed logging service is deployed as a
production service, it supports the continuous service in
case of failure of the distributed node (Tanenbaum and
Van Steen, 2007). DLS has HA since DHT Chord has the
successor lists on those DHT nodes (Stoica et al., 2003).
The list supports the connection of multiple alternative
DHT nodes if the successor node is unreachable.

5.4.2 DR

In addition to the native DHT function to support the
HA, the duplicated systems are used for each service.
For example, when DLS receives the log message, it is
duplicated for a primary and backup node. One log message
can be stored in the primary node, and the same log
message is forwarded to the backup node. Both the primary
and backup nodes on DLS are deployed to the isolated
underlying resources. They are deployed to two physical
locations in different countries.

As applications and solutions have the DR site at
another data centre. DLS is also deployed to the same
configuration as the primary data centre. As the logging
service has log messages for operation and systems
management, there is no need to copy those log messages to
the data centre in the DR site since the backup data centres
has an entirely different operation management from the
primary data centre.

Figure 10 Local authentication process
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6 Evaluation

This section describes the evaluation of DLS which has
a DHT to store and retrieve log messages of distributed
nodes. The performance test on the emulated environment
was conducted to evaluate the DLS deployment. The
scalability for the retrieval of log messages, the stored log
messages and the number of nodes is examined on the
emulated environment.

6.1 Emulation toolkit for evaluation

The emulated environment was constructed using the DHT
emulator called Overlay Weaver (Shudo et al., 2006, 2008).
It facilitates the implementation of routing algorithms and
runs with multiple well-known DHT algorithms that can be
evaluated with hundreds of code lines (Shudo, 2006).

The toolkit also provides a common API that allows
access to high-level components including DHT and
multicast functions. It is implemented using Java codes.
It supports multiple DHT algorithms, such as Chord,
Kademlia, Koorde, Pastry and Tapestry. Those DHT
algorithms and their routing methods have been studied in
earlier research (Stoica et al., 2003).

DLS is evaluated with Chord, which a DHT algorithm.
It is also a well-known algorithm and the emulated
environment can be constructed using the Overlay Weaver
toolkit. As it is used for the DHT algorithm in the
evaluation, the iterative routing is applied to DHT. Chord
is also a basic algorithm and routing method; therefore, the
evaluation could focus on the capability of DLS for the
production system.

The connections among DHT nodes may be the
loopback network interfaces that avoid the network
overhead for the interactions among DHT nodes. Therefore,
the essential processing capability could be evaluated.
The performance of DHT can also be measured using
the random retrieval data set based on the number of
stored messages. The emulated environment runs on virtual
machine (memory 4 GB, CPU 2 cores) on which Ubuntu
distribution is installed.

Figure 11 DLS emulation setup

6.2 Evaluation setup

Figure 11 shows the emulation setup for the DLS evaluation
to process incoming log messages. This evaluation has
adopted use case scenarios with configurations on the
Overlay Weaver toolkit. In Figure 11, the leaf computing

nodes generate log messages and forward them to the
local logging component in DLS which consists of multiple
distributed nodes. Each node processes incoming log
messages on the same nodes. A DLS node processes
them, as shown in Figure 11. As those nodes are located
at distributed locations, the processing for incoming log
messages can be distributed to other nodes.

The basic functions for the logging service are ‘store’
and ‘retrieve’ for those log messages. The ‘store’ function
is to store those incoming log messages into the backend
storage, which is DHT in the proposed method. The
process for the ‘store’ function can be sequential, and the
submissions for log messages have different time. It may
be the batch process and is not related to user experience.
On the other hand, the ‘retrieve’ function can be evaluated
for the DLS performance. It takes some time to retrieve the
specified log message from the many log messages since
many log messages are stored in the DLS. The performance
evaluations are to measure the retrieval time with several
condition parameters.

Figure 12 Processing time for random retrieval (fixed 1,000
records) (see online version for colours)

Figure 13 Processing time for stored records (fixed 100
random retrievals) (see online version for colours)

6.3 Evaluation results

• Processing time for retrieval counts: Figure 12 shows
the processing times required to retrieve the log
message for the count of retrieval records (log
messages) that are stored in DLS. The number of
DHT nodes is fixed at 100 for the evaluation as
shown in Figure 12. As the retrieved counts are
changed from 100 to 1,000, the total processing times
is evaluated for the retrieval of log messages. In this
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evaluation, the total processing time has a linear
relation with the number of retrieval counts when the
stored records and the number of nodes are fixed. The
value 0.044x with the linear fitting means that the
retrieval is approximately 44 (msec) per record on the
emulated environment as shown in Figure 12. The
processing time y intercept 0.0003 (sec) = 0.3 (msec)
in Figure 12 may be negligible since the precision of
the measurement time is approximately 1 (msec),
which is greater than 0.3 (msec).

• Processing time for stored records: Figure 13 shows
the total processing times for the number of stored
records. The number of stored records for log
messages ranges from 10 K to 100 K, and the
processing times have been always flat for the
number of stored records. The evaluation is
performed when the retrieval count is fixed at 100. In
the evaluation, the processing time is flat for the
number of stored records. In Figure 13, the y
intercept 4.364 (sec) for the linear fitting is shown for
100 retrieval counts. Therefore, it can be estimated at
43.64 (msec) per retrieval, and the value in Figure 13
is nearly equal to 44 (msec) per record in Figure 12.

The processing times can be recognised with a flat
line since the slope x is 5 ∗ 10−8 (sec) in Figure 13.
Its value may be negligible since the precision of the
measurement time is approximately 1 (msec), which
means an order of 10−3 (sec).

Figure 14 Processing time for DHT nodes (fixed 10,000
records) (see online version for colours)

• Processing time for number of nodes: As the number
of DHT nodes is increased, the capability to process
incoming log messages is evaluated based on the
change in the number of DHT nodes. For example, its
capability to retrieve the log messages is assessed.
The overhead of the processing on DHT nodes is
evaluated. Figure 14 shows the processing time for
the number of DHT nodes. The x-axis is the number
of DHT nodes from 1 to 200, and the y-axis is the

total processing time for the retrieval of records. The
stored records are changed from R = 100 (records) to
R = 1,000 (records) in each graph plot. The key for
the retrieval is randomly selected for each retrieval
process. For example, when the stored records
R = 400 (records), the total processing time with the
linear fitting is y = 3 ∗ 10−5x + 17.604, 17.604 (sec)
is approximately four times 4.4 (sec) per 100
(records). It is thus approximately 44 (msec) per
record. The value 44 (msec) per record is the same in
Figure 12 and 13. As the y intercept is 3 ∗ 10−5

(sec), its value may be negligible since the resolution
of the measurement time is approximately 10−3 (sec).
Although the number of DHT nodes is changed from
1 to 200, the total processing time remains flat. The
stored records are changed from R = 100 (records) to
R = 1,000 (records), and the total processing times
are always flat with the increased multiplication of
retrieval counts in Figure 14.

The processing time required to retrieve log messages
is directly related to the waiting time for applications
and administrators. As the number of retrieval counts is
increased, the linear relationship with the processing time is
shown in Figure 12. It can be easily estimated even if the
number of retrieval counts has increased and decreased.

Although the number of stored records for log messages
is increased to 100 K (records) in Figure 13, the total
processing time for the retrieval is flat at 43.64 (msec)
per record. The operation for DHT uses a random key to
retrieve the log message. It shows that the process of the
retrieval operation is not directly related to the number of
stored records.

The number of DLS nodes is increased from 1 to 200
in Figure 14, but the total processing time to retrieve the
specified log message is flat. This means that there is less
overhead of the processing time for retrieval when the
number of DLS nodes is increased.

7 Discussion

The section discusses the further studied items and
challenges for DLS in the paper.

The evaluation results show that DLS has fewer
overheads when retrieving log messages. The balance
for the resource allocation is also considered for the
logging service. Fewer of nodes with a large number of
log messages causes some difficulties in processing log
messages in each node. When the number of leaf computing
nodes that generate log messages is increased, DLS must
increase CPU and storage resources to process them.

The number of nodes in DHT will be optimised to
support DLS. A balance exists between the number of
nodes and the number of log messages. The dynamic load
balance and increased computing resources can be applied
to resolve it.

The emulated environment uses the memory data for log
messages and local loopback for the network connections
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among DHT nodes. Therefore, the overheads of storage and
network time may be avoided. They would be included
in the evaluation in addition to DHT processing time.
Future evaluations will include the network overhead and
the storage I/O since the actual system has these overheads.
In real computing environments, the storage and network
overheads are affected by the entire performance of the
logging service. In addition, the emulated environment is
the Java toolkit, and the retrieval processing time per record
is rather slow but stable. Therefore, the toolkit will be
updated to improve the retrieval processing.

The CPU and storage resources for leaf computing
nodes are different in general. Some nodes have large
computing resources while others do not. The balance
of resource consumption for CPU and storage can be
considered. For example, nodes with large computing
resources receive numerous log messages but nodes with
smaller computing resources process fewer log messages.
A DLS with a hybrid approach, which consists of
dedicated nodes for the log service and shared nodes
with applications, can be considered in this case. In the
consideration of those approaches, the DHT algorithm will
be updated with the resource usages rather than equally
hashed allocation to store and retrieve the log messages.
This presents the key challenge with respect to DLS.

Each node in DHT gets routing entries for several
other nodes (Stoica et al., 2003). It maintains the routing
information as those nodes join and leave the system. As
the routing table is updated, each node can resolve the hash
function with the information of several other nodes. As
each node maintains information only about O(logN) for
N , each search process can be completed for no more than
O(log 2N) messages.

8 Conclusions

The paper proposes a DLS which has adopted DHT.
It can be applied for the production system since DLS
meets the set of requirements for requirements for cloud
logging service. It can also resolve the issues and challenges
that current logging services with CSM face. In the
proposed DLS, the workloads to store, process and retrieve
log messages can be distributed among distributed leaf
computing nodes which applications and solutions are also
deployed and running. DLS can operate distributed nodes
without the dedicated CPU and storage resources for the
logging service. The service level for DLS can be kept
identical to that of CLS. Lifetime management for log
messages, authentication to control access and resilience to
ensure continuous service are proposed for DLS. Results
of the evaluation of the emulation for the retrieval counts,
stored records and node overheads shows that DLS is
feasible for production usage since it exhibits a sustainable
performance with respect to storing and retrieving log
messages.
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